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The coupling impedance of the APS-SR vacuum chamber components has been measured 
with the coaxial wire method using a synthetic pulse technique [1 J. As depicted in figure 1, a 
vector automatic network analyzer (VANA) such as the HP8510B was used to measure the 
two-port S-parameters of the device-under-test (DUT). The measured parameters must be 
corrected to account for the imperfections of the various measurement circuit components 
such as connectors, cables, etc. The HP 8510B contains built-in calibration routines for such 
corrections [2J. Frequently applied ones include the 1-PORT calibration for reflection only, 
the THRU & ISOL calibrations for transmission and coupling measurements and a FULL 
2-PORT calibration for 2-port S-parameter measurements. Whenever a reference chamber 
is available and the DUT has a coaxial structure, any of the above-mentioned calibrations 
can be used. 

In many cases, the DUT is either a resonant circuit (cavity) or a non-coaxial structure. 
For these devices, calibration using the previously mentioned techniques is difficult due to 
the lack of a good 50 n matching load. Devices for which ~ 50 n load is unavailable can still 
be calibrated using the TSD or TRL techniques [3, 4J. The TRL calibration is also a built-in 
routine on both the HP 8510B and the HP 8753C. However, there are certain drawbacks 
which limit the use of these built-in routines, namely: 

1. A limited number of data points in the selected frequency span (801 points for the 
8510B and 1601 points for the 8753C). 

2. The stop frequency must be a harmonic of the start frequency in the low pass time 
mode. 

3. The limited number of data points coupled with a large frequency span and high Q 
structures forces one to divide the measurements and calibration into smaller frequency 
ranges. This requires a separate calibration for each span which reduces repeatability 
due to the assembly/disassembly of the calibration standards. 

Due to these limitations, the built-in routines on the HP 8510B are not suitable for many 
applications of interest including coupling impedance measurements [1 J. For these cases, a 
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Figure 1: Experimental setup for S-parameter measurement 
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separate, customized TRL calibration routine should be written. We have chosen to do this 
using the C programming language on a personal computer (PC). 

The intent of this note is not to explain all of the available calibration methods in detail. 
Instead, we will focus on the calibration methods of interest for RF impedance coupling 
measurements and attempt to explain: 

1. the standards and measurements necessary for the various calibration techniques, 

2. the advantages and disadvantages of each technique, 

3. the mathematical manipulations that need to be applied to the measured standards 
and devices, and 

4. an outline of the steps needed for writing a calibration routine that operates from a 
remote computer. 

For further details of the various techniques presented in this note, the reader should consult 
the references. 

II. FULL 2-PORT CALIBRATION 

Microwave devices are typically characterized by scattering parameters which relate the 
incoming and outgoing voltage signals of the various ports. The scattering parameters for a 
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(1) 

where an and bn are defined by the forward and backward voltages at each port, normalized 
to the port impedance, ZOn. When discussing calibration techniques, it is oftentimes more 
convenient to talk in terms of cascadable T-matrices which are defined by 

(2) 

Simple relationships exist between the terms of the Sand T matrices. 
In general, measurement of the scattering parameters of an unknown device should be 

corrected for repeatable system errors through a system calibration. Any microwave cali
bration technique must be capable of representing repeatable system errors and provide a 
method for correcting uncalibrated measurements. Most methods represent these errors by 
the scattering response of a hypothetical virtual error network which interfaces the network 
analyzer to the DUT. The scattering parameters of the virtual error networks are computed 
from the measurement of known standards. The 'true' parameters of the DUT can then 
be calculated by stripping the error networks from the measured scattering response of the 
DUT. The different calibration techniques differ mainly in the proposed error model that is 
solved and the number and type of standards used. In general, at least three standards are 
needed for calibration of a two-port device. 

The full two-port calibration used in the 8510B is based on the work by Vladmir Gel
novatch [5] but uses a more complex 12-term error model. The calibration in [5] which will 
be described here uses a 10-term error model which includes leakage (see figure 2). The full 
two-port calibration requires measurements on both ports of the VAN A with three standards 
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- a known load, an open, and a short. The scattering parameters of a 'through' connection 
(port one of the VANA connected directly to port two) also need to be measured. The results 
of these measurements are used to calculate the error vectors S11A, S22A, S11B, S22B, S21L, 

Sl2L, Sl2AS21A, S 12B S21B, S 22B S12A, and S 21A S21B using closed form expressions. Notice that 
some of the error vectors solved for are actually products of individual error vectors and do 
not need to be solved for individually. The solution for the embedded scattering parameters 
of an unknown DUT can then be given in terms of the measured scattering parameters of 
the D UT and the error vectors by [5J 

(3) 

(4) 

(5) 

S 
(Sl~~s~~!L ) 

12 = 
D 

(6) 

where SijM are the measured scattering parameters of the DUT and where 

D= 
(7) 

The full two-port calibration provides closed form expressions for the error vectors and the 
de-embedded scattering parameters of the DUT. The measurements and standards needed 
for calibration are fairly simple. Thus, the full two-port calibration works well for coaxial 
transmission lines where a good load standard may be fabricated. However, in maJ,1y cases 
such as the APS storage ring chamber configuration, the standards required for the full two
port calibration are not practical. In these cases, other calibration techniques become more 
desirable. 

III. GATING TECHNIQUES 

The time domain 'gating' technique is not a true calibration procedure. However, it 
does allow one to enhance and perform transmission measurements on localized portions of 
a DUT. Also it is particularly useful for evaluation of many of the devices to be used in the 
APS. For these reasons, we will briefly discuss the 'gating' technique. 

'Gating' is a time filtering technique which allows one to measure the frequency response 
at a particular location of the DUT. One way to accomplish this is to transmit a short pulse 
through the D UT and view the detected signal through a window in the time domain. The 
window allows one to isolate the pulse which has not undergone a reflection and discard 
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all other pulses. Another method is to perform the measurement in the f.requency domain, 
convert it to the time domain via an inverse Fast Fourier Transform (FFT), and then perform 
the windowing. The 'gated' data can then be converted to the frequency domain with a FFT. 
In this fashion, the frequency response of a particular area of interest of the DUT can be 
calculated by filtering out the various unwanted reflections. 

The basic setup for performing gated time domain measurements is shown in figure 3. The 
spacers are needed to ensure that the various pulses from the reflections are well separated 
and do not overlap in the time domain. The width of the gate must also be considered 
and depends on the lowest frequency needed as well as the frequency range of interest. To 
eliminate low frequency overlap, the length of the spacers should be at least c7/2 where 7 
is the gate width. The low frequency cutoff is given by ~ 1/7. It should be noted that 
the length of the spacers starts to become impractical for frequencies ~ 100 MHz. The 
gating technique can be better visualized using the signal flow diagram in figure 4. In this 
figure, the subscripts X and Y refer to the transition hardware while the spacer sections are 
represented by the exponential terms. The transmission of this system is given by 

S S S i(81H2) Sfr0TAL = . " 21~ 21Y 21
e 

"2 . ) 
1 - S22XSllet2e1 - SllyS22et282 + S22X Sllyet (81 H2) (Sl1S22 - S12 S21) (8 

It is easy to see that by gating around the non-reflected pulse, we can eliminate the reflections 
in the denominator of equation 8 giving 

SGATED - S S S e i (81 H2) 
21 - 21X 21 Y 21 . (9) 

The time domain gating technique is a powerful measurement technique for transmission 
measurements. It allows one to filter out the multiple reflections that obscure the desired 
result. Care must be taken to avoid higher-order mode propagation and aliasing when using 
the gating technique. Higher-order mode propagation can cause a beating between the 
different mode pulses giving incorrect results. Aliasing results from using FFT's and again 
can give erroneous results. Another drawback to the gating technique is the need for short 
pulses for good spatial resolution. 

IV. TRL CALIBRATION 

The drawbacks to the full two-port and the gating techniques point out the need for a di
rect calibration using simple, realizable standards which are applicable to the various devices 
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Figure 4: The signal flow diagram for gating 

of the APS. The TRL (through, reflect, line) calibration developed by G.F. Engen and C.A. 
Hoer [4J provides a simple technique for the calibration of devices for which matched loads 
are difficult to obtain. The method only requires three standards - a through connection, a 
high reflectivity termination, and a section of uniform line. It should be noted here that the 
TSD (through, short, delay) calibration [6J is a special case of the TRL calibration where 
the high reflectivity termination is considered to be a perfect short. 

The standards for the TRL calibration are easily realizable even for unusual waveguide 
configurations. The through standard may contain a short (usually < 1/4 ).) spacer. Also, 
it is not necessary to know the reflection coefficient of the short. This value is actually 
determined during the calibration process. The precise electrical length of the line standard 
does not need to be known and is also determined during the calibration. The only critical 
parameter is the impedance, Zo, of the delay line. 

The basic TRL calibration outlined in [4] is based upon an 8-term error model (see 
figure 5). The procedure then consists of finding the S-parameters for two two-port virtual 
error matrices. This calibration therefore ignores the leakage terms, S12£ and S21£, present in 
the 10-term error model (see figure 2). However, adding in the leakage terms is not difficult 
and will be discussed later. A more detailed derivation of the TRL calibration equations is 
given in Appendix A. From figure 5 it is easy to see that the measurement of the uncalibrated 
S-parameters of a DDT can be written in terms of T-matrices as 

(10) 

where TM represents the measured T-matrix, TDuT represents tha actual T-matrix of the 
DDT and TA and TB are the virtual error box T-matrices. Once the calibration has been 
completed and the terms of the virtual error matrices determined, de-embedding the DDT 
simply consists of stripping off the error matrices 

(11) 

This results in explicit expressions for the de-embedded S-parameters. These parameters 
may be calculated from equation 11 and are given in Appendix B. 

The calibration procedure consists of measuring the scattering matrices for the three 
standards which gives three known scattering matrices, ST, SR, and SD, containing 10 terms 



REF S 
21A 

S 
11A 

S S 
12M 12A 

S 
11M 

S S 
21 21B 

S S S ISl:~ 22A 11 22 

S S 
12 12B 

Figure 5: The TRL error model 

tS22~ 

S 
22M 

S 
21M 

REF 

7 

(S12R and S21Ft are set equal to zero). Given these measurements, we need to find the eight 
terms of the two error matrices, SA and SB. We begin by converting all of the measured 
S-matrices, ST, SR, and SD, into T-matrices, TT, TR, and TD. The T-matrix for the through 
connection can be represented by 

TT = TATB , 

while the T-matrix for the line connection can be represented by 

TD = TATLTB , 

where TL is the T-matrix for a uniform line section and is given by 

Solving equation 12 for TB and substituting into equation 13 gives 

TDTi1TA = TATL· 

(12) 

(13) 

(14) 

(15) 

Equation 15 consists of four equations with five unknowns. However, there are only three 
independent solutions to equation 15. These solutions give U~~!), U~;!), and e2

,,/1. We have 
effectively solved for two terms of the A error matrix as well as the electrical lenGth of the 
delay line. Using this information, we can now solve equation 12 for TB to give !:2l.B.t

t 
) and 

22B 

(~~~!) in terms of (~~~!), (~;;~) and the measured quantities of TT. 
We must now make use of the reflection standard. The reflection coefficient measured at 

port 1, SllR, can be written as a function of the reflection coefficient of the termination, f L, 

and the S-parameters of error-box A 

S - S S12AS21A f L 
llR - llA + 1 Sf· - 22A L 

Similarly, we can write for the measured reflection coefficient at the B error box 

S - S S12BS21B f L 
22R - 22B + 1 Sf· 

lIB L 

(16) 

(17) 
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Equations 16, 17, and 12 can be solved for (!u.A), (!uB.), and fL. At this point the TRL 
t')') At')') P 

calibration is essentially completed. The S-paraineters~ol'the virtual error matrices are given 
in terms of the solved quantities by 

5 
_ t12A 

11A - -t-' 
22A 

5 22A = _ t21A = (inA) (t11A) , 
t22A tllA t22A 

1 
512A521A = -2- (tllAt22A - t12At21A) 

t22A 

= tllA {I _ (t12A) (t21A)}, 
t22A t22A tnA 

5 _ t12T - t22T (~) (~) 
nB - tnT (!~~1) - t12T (!~~1) , 

5 = t21T (~) - tnT (~) and 

22B t22T (~~~1) - t12T (~;;1) , 
tllB 

5 12B 5 21B = -- + 511B522B 
tnB 

tUT - t21T (~) (~) 
- tnT (~;;~) - t12T (~~;1) 

(18) 

(19) 

(20) 

(21 ) 

(22) 

(23) 

As is evident from the above equations, the TRL calibration solves only for the error matrix 
product, 512521 . It is impossible, on physical grounds, to separate these two S-parameters. 
We have thus solved for only six of the eight terms contained in the two virtual error boxes. 
By hypothesizing that the two error matrices share equally in any apparent nonrec!procity, 
we can write 

(24) 

and 

(25) 

Similar equations exist for the second error matrix by substituting B for A in the above 
equations. All eight terms of the two error matrices are now known and the calibration is 
complete. 

As was mentioned before, the TRL calibration does not contain the two leakage terms 
of the la-term error model (see figure 2). The leakage terms are usually negligible but 
are easily included in the TRL calibration. This is accomplished by placing terminations 
at the calibration plane for which 512 = 5 21 = o. The high reflectivity standard of the 
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TRL calibration satisfies this condition. By measuring S12 and S2l with these terminations 
in place, we obtain the leakage terms S\2L and S21L respectively (see figure 2). The de
embedding procedure is now the same except that we must replace Sl2M with (S12M - Sl2L) 
and S2lM with (S2lM - S2lL) in the de-embedding equations given in Appendix B. 

The TRL calibration is well suited for impedance measurements of the various APS de
vices. The standards are simple and easily realizable even for unusual device geometries. The 
calibration process is straightforward and results in explicit expressions for the error terms. 
De-embedding is also performed using explicit expressions. Additionally, the TRL calibra
tion process can be easily implemented on a remote computer to overcome the limitations of 
the built-in routines on the HP 8510B and 8753C network analyzers. The TRL calibration 
technique does possess some limitations. Higher-order modes can affect the calibration and 
must be eliminated. For best accuracy, the through standard should be less than 1/4 ,\ at 
the highest frequency measured and the delay or line standard should be less than 1/2 ,\ 
longer at the highest frequency. However, the difference in length between these standards 
should be discernible (greater than ~ 20°) at the lowest frequency. These restrictions limit 
the frequency span for a given set of standards to an 8: 1 ratio. Thus, for a larger desired 
frequency range, multiple standards and calibrations must be applied. 
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Appendix A 

Derivation of the TRL calibration 

This derivation follows that given in [4]. Measurement of the scattering matrices for the 
three standards (through, reflect, line) gives three known scattering matrices, ST, SR and 
SD, containing 10 terms (S12R and S21R are set equal to zero). Given these measurements, 
we need to find the eight terms of the two error matrices, SA and SB (see figure 5). We 
begin by converting all of the measured S-matrices, ST, SR and SD, into T-matrices, TT, TR 

and TD . The T-matrix for the through connection can be represented by 

(26) 

while the T-matrix for the line connection can be represented by 

(27) 

where TL is the T-matrix for a uniform line section and is given by 

(28) 

Solving equation 26 for TB and substituting into equation 27 gives 

(29) 

after some manipulation. The quantity TDTi1 is a measured, known quantity and will be 
renamed TDT for convenience. We can now write out equation 29 explicitly 

t11DTt12A + t12DTt22A = t12A e"l, 

t21DTtllA + t22DTt21A = t21A e -,,1, 

t21DTt12A + t22DTt22A = t 22Ae"l, 

(30) 

(31) 

(32) 

(33) 

where tijTD are the elements of the matrix T DT . We now have a system of four equations with 
five unknowns (the four elements of the matrix TA and il). However, taking the determinant 
of equation 29 gives 

(34) 

which shows that there are only three independent solutions to equation 29. We can now 
solve equations 30 through 33 for the three independent solutions. The ratio of equation 30 
to equation 32 and equation 31 to equation 33 gives 

(
t11A) (tllA) t21DT -- + (t22DT - tnDT) -- - t12DT = 0 
t21A t21A 

(35) 
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(36) 

Therefore, the ratios U~~J and U~;!) are given by the solutions to the same quadratic 
equation. The solutions can be written as 

(
tllA) (t12A) 1 { V 2 } 
t21A ' tnA = 2t21DT tllDT - t22DT ± (t22DT - tllDT) + 4t21DTt12DT . (37) 

It cannot be determined right now which solution corresponds to which ratio. This will be 
discussed later. We can now take the ratio of equation 33 to equation 32 to arrive at the 
third solution 

e2--y1 = t2IDT (~) + tnDT 

t12DT U~~~) + tllDT 

(38) 

This is all the information that we can get out of equations 30 through 33. We now know 
three parameters (~) (hu) and e2--y1. 

, t21A ' tnA 
We can now solve equation 26 for the elements of TB . Taking ratios of the elements of 

TB we can show that 
t21T - tllT~ 
---------71~lA~and 
tnT - t12T!:2l..d..tt 

llA 

t12T - t22T~tt 
22A 

(39) 

( 40) 

Both of these quantities are therefore solved in terms of U~~!), U~~~) and the measured 
quantities of TT. Additionally, we can solve for 

( 41) 

which is known except for the quantity U~~!). 
We now know five parameters, (~~~!), (~;;:), U~~!), U;;!) and e2

--y1. However, we have 
yet to make use of the reflection (short) measurements. The reflection coefficient measured at 
port 1, SUR, can be written as a function of the reflective termination and the S-parameters 
of error-box A 

( 42) 

In terms of the T-matrix elements, this becomes 

( 43) 
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Solving equation 43 for C~~1) gives 

tllA SUR - !ua 
t22A ( 44) 

Similarly, we can write for the reflection load at the B error box 

(45) 

In terms of the T-matrix elements, we get 

( 46) 

Solving for (~~~!) gives 

tUB S22R + ~ 
t22B - fL (1 + S22R~;~!r 

( 47) 

We can now eliminate the unknown reflection coefficient, fL from equation 44 and equa
tion 47 to get 

(
tnA) (t22B) = (SllR -~) (1 + S22R~). 
tnA tnB (1 - SllR~;~!) (SnR + ~~~!) 

We can now combine equation 41 and equation 48 to get 

and 

tnA -=± 
t22A 

(SUR -~) (1 + SnR~) (tllT - t21T~) 
(1 - SllR!~~!) (SnR + ~~~!) (t22T - tl2T !~~!) 

tllT - t2lT !:J.2.At
t 
22A 

( 48) 

( 49) 

(50) 

The sign of equation 49 is still unknown. A nominal value for fL should be known, permitting 
the evaluation of the sign of equation 49 using equation 44. 

The TRL calibration is now complete and the scattering parameters of error box A are 
given from equations 30 through 33 as follows 

S - tl2A 
llA - t ' 22A 

t21A 
S22A = - -- =-

t22A ( t2IA) (tllA) , 
inA i22A 

(51 ) 

(52) 
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1 
= -,,,- (tllAt22A - t l2At21 A) 

t22A . 

= ~::~ {
I - C::~) C::~) }. 

(53) 

The parameters for error box B can be solved for in a similar manner or in a more convenient 
manner by using equation 26 giving 

t t (~) (!ll.d.) S _ 12T - 22T tllA t22A 

lIB - (t) (t) , t .'oll.LL - t .':J.2.A. 22T t22A 12T t22A 

(54) 

(55) 

(56) 

This completes the TRL solutions for error boxes A and B. It is quite easy to de-embed a 
measured S-matrix given this information. 

As we can see, the TRL solution solves only for the error box product, Sl2S21. It is 
impossible, on physical grounds, to separate these two S-parameters. However, various 
assumptions can be made. First, we can note that the determinants of the measured T
matrices have the following property 

DET(TT) = DET(TD ) = (S12A) (S12B) . 
S21A S21B 

(57) 

We can then hypothesize that the two error boxes share equally in the apparent nonreciproc
ity due to system error. This gives 

(58) 

Combining equation 57 with equation 58 results in the following relationship between the 
off-diagonal error box components 

Sl2A _ S12B - ± J S12T 
S21A - S21B - S21T' 

(59) 

This gives 

(60) 
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and 

(61 ) 

The product S 12A S21A is known from equation 53. Similar equations can be written for the 
B error box off-diagonal components. 

We must now assign the correct root in equation 37 to the correct ratio such that the so
lution is physically realizable. Choosing the roots correctly implies that the correct electrical 
length, Il is used. This may be done done by specifying that le2')'li < 1. By substituting the 

solutions for (~~~1) and (~~;~) into equation 38 we get 

(62) 

where the + sign in the numerator corresponds to setting the positive root of equation 38 
equal to (~~;1). Thus, the magnitude of equation 62 may be used as a flag function to 

determine the correct root choice. Many times ie2')'11 is very close to one in value so this may 
not be the best test. Alternatively, if the electrical length of the calibration line is known 
with a fair degree of accuracy, the imaginary part of e2')'1 may be used as a flag function. This 
is very accurate if a short spacer is used for the through measurement since the electrical 
length is usually chosen < ~.\ and therefore the imaginary part of e2

')'lspacer must always be 
positive. We can find e2

')'lspacer from the ratio of the diagonal elements of TilTTTi3 1
• 
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Appendix B 

The De-Embedding Equations 

Once the components of the error matrices A and B have been determined, we can now 
de-embed a measured S-matrix and calculate the true S-matrix for the device under test. 
Expressed in terms of T-matrices the procedure is trivial and can be written as follows: 

where TDUT is the true T-matrix and TM is the measured T-matrix for the device. Written 
explicitly in terms of the individual components of the S-matrices, we have [3] 

S _ Sl1B [Sl1AS22M - DET(SM)] + (Sl1M - SllA)DET(SB) 
11 - SI1B [S22MDET(SA) - S22ADET(SM)] + [Sl1MS22A - DET(SA)] DET(SB) ' 

S _ - S12MS21AS21B 
12 - Sl1B [S22MDET(SA) - S22ADET(SM)] + [Sl1MS22A - DET(SA)]DET(SB) ' 

S- - S21MS12AS12B 
21 - Sl1B [S22MDET(SA) - S22ADET(SM)] + [Sl1MS22A - DET(SA)] DET(SB) ' 

S _ S22B [S22ASllM - DET(SA)] + S22MDET(SA) - S22ADET(SM) 
22 - Sl1B [S22MDET(SA) - S22ADET(SM)] + [Sl1MS22A - DET(SA)] DET(SB) ' 

where DET(SM), DET(SA), and DET(SB) are the determinants of the S-matrices for the 
measured device and the A and B error boxes, respectively. If the leakage terms have been 
determined, they may be easily added to the above equations by substituting (S12M - S12£) 
for S12M and (S21M - S21£) for S21M. 




